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Hysteresis effects in spin systems with quenched disorder
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We present detailed numerical results for hysteresis effects in spin-glass systems. In particular, we focus on
the dependence of hysteresis loop area on~a! disorder amplitude and~b! frequency of the applied magnetic
field.
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I. INTRODUCTION

There has been intense research interest in the static
dynamical properties of spin glasses, which consist of m
netic impurities randomly placed in a host lattice@1–4#.
These systems exhibit many properties analogous to thos
structural glasses, e.g., slow relaxation, multiplicity of me
stable states, etc. However, the physical origins of th
properties are considerably different. In structural glass
slow dynamics results from the trapping of particles in ca
comprised of other particles. In spin glasses, slow evolu
results from the effects of quenched disorder and frustrat

Experimental observations on spin glasses are usually
terpreted in terms of phenomenological models with com
cated free-energy landscapes, having deep valleys sepa
by randomly distributed barriers. This complex free-ene
landscape leads to frequent trapping in local minima and
consequent breakdown of ergodicity in phase space, i.e.
system cannot access all states over the duration of a ty
laboratory experiment. Because of the long time scales
volved in spin-glass dynamics, most experimental syste
should be understood as being effectively nonequilibri
systems.

An important nonequilibrium property of spin systems,
general~and spin glasses, in particular! is that of magnetic
hysteresis. Typically, when an oscillating magnetic field
applied to an ordinary spin system, the response is delaye
leading to hysteresis effects. The magnitude of hysteres
determined by the competition between experimental t
scales~measured by the inverse frequency of the appl
perturbation! and the spin relaxation time scale. The ph
nomenon of hysteresis has received considerable attentio
the context of both pure and disordered spin systems, w
we will review shortly.

In this paper, we focus upon hysteresis effects in sp
glass systems. We will consider two relevant cases, i.e.~a!
weak-disorder limit, where the system is in the paramagn
phase, and~b! strong disorder limit, where the system is
the spin-glass phase. We have already remarked that re
ation in disordered systems is characterized by a wide s
trum of relaxation times. Thus, the hysteretic response
these systems will be determined by a competition betw
the experimental time scale~inverse frequency! and a multi-
tude of internal time scales. This problem has been the s
ject of some preliminary studies, which we discuss later.

This paper is organized as follows. In Sec. II, we provi
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a brief overview of the results known in the context of hy
teresis in spin systems. In Sec. III, we discuss the soft-s
Sherrington-Kirkpatrick~SK! model and its dynamics. The
detailed numerical results obtained from our simulations
presented in Sec. III. In Sec. IV, we present a discussion
summary of our results.

II. OVERVIEW OF KNOWN RESULTS

As we have remarked earlier, hysteresis effects in s
systems have been extensively studied in the literature.
us briefly review some of the known results in this conte

A. Pure spin systems

In early work, Agarwal and Shenoy@5# formulated gen-
eral conditions for the existence and nature of hystere
loops, elucidating the role of various relevant time scales.
important work in the context of our present discussion
due to Junget al. @6#, who studied the hysteretic response
a single, continuous spin in a bistable potential. The lo
area is perhaps the most important quantitative character
of the hysteresis loop as it is proportional to the heat dis
pated during a field cycle. Junget al. obtained an analytica
expression for the loop area at small frequencies, i.e.,

A~v,h0!5A~0,h0!1av2/3~h0
22hc

2!1/3, ~1!

whereA(v,h0) denotes the loop area for an external ma
netic fieldh0cos(vt); anda,hc are constants. Junget al. also
verified their analytical result, both numerically and expe
mentally. Studies of the single-spin dynamics can also
thought of as a mean-field limit of the coupled-spin dyna
ics we will discuss subsequently,

Bose and Sarkar@7,8# extended the work of Junget al. @6#
in two important directions. First, they analytically obtaine
area-scaling laws valid for an extended region of (h0 ,v)
values @7#. Secondly, they studied the effects of therm
noise on area-scaling laws and the dynamical symme
breaking transition@8#.

The next class of studies we discuss involves interac
spin systems. In early work, Raoet al. @9# numerically stud-
ied hysteresis loops in interacting spin systems at temp
tures below the ordering temperature. They considered
different cases:~a! Ising model with Monte Carlo~MC! ki-
netics, for which they obtained qualitative results.~b! Lange-
vin studies of the time-dependent Ginzburg-Landau~TDGL!
©2001 The American Physical Society06-1
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model with O(n) symmetry in the limitn→`. For this
model, their numerical results for low freqeuncies sugges
an area-scaling lawA(v,h0);v1/3h0

2/3. Subsequently, Dha
and Thomas@10# analytically studied case~b! above and ob-
tained the resultA(v,h0);v1/2h0

1/2—at variance with the
numerical results of Raoet al. @9#.

More extensive MC simulations of the Ising model in
oscillating field were conducted by Lo and Pelcovits@11#.
Furthermore, Senguptaet al. @12# also studied this problem
through a cell dynamical simulation. Both sets of auth
again found that an area-scaling law was valid at low f
quencies, namely,A(v,h0);vah0

b , with a.0.40 andb
.0.47. Furthermore, Acharyya and Chakrabarti@13,14# have
also performed MC simulations of the Ising model in
oscillating field and have obtained scaling laws for the lo
area over a wide range of values ofh0 ,v, and temperatureT.

The above discussion indicates that the loop area exh
different scaling laws in different windows of (v,h0) space.
This is clearly not satisfying and suggests that the ab
studies may be seeing only limited ranges of a more gen
behavior of the loop areaA(v,h0). This is the approach
emphasized by Sideset al. @15–17# in a comprehensive
study of this problem. Essentially, these authors argue
the hysteresis loop in pure Ising systems~and the associate
dynamical phase transitions! should be interpreted in term
of decay of metastable phases through nucleation and gro
of ~single or multiple! droplets. This leads to asymptotical
logarithmic dependencies ofA(v,h0) on v and h0. How-
ever, the modulations are extremely slow andA(v,h0) ap-
pears to exhibit power-law scaling even over a few deca
of parameter values. Of course, the ‘‘power-law’’ expone
are dependent on the window of parameters one focu
upon. Sideset al. have also peformed extensive MC simul
tions of hysteresis in kinetic Ising models, which both gui
and confirm their analytical arguments. We believe that
work of Sideset al. provides an overview of hysteresis
pure Ising systems, which systematizes the earlier obse
tions of diverse exponents.

This discussion has attempted to provide a brief review
hysteresis effects in pure systems. We hope that the m
thrust of various studies has been clarified, namely, to es
lish the functional dependence of the hysteresis loop are
various system parameters. The same attitude will also g
our subsequent investigations of hysteresis loops in s
glasses.

B. Disordered spin systems

Let us next consider some representative studies of
teresis in disordered systems. Acharyya and Chakrabarti@14#
have also studied the dilute Ising model in an oscillato
field. In particular, they examined the effects of increas
dilution on the area of the hysteresis loop. Their results
mostly qualitative, with the most relevant observation be
that there is no unusual behavior as the density of spins g
through the percolation threshold. A similar observati
holds in the context of the pure Ising model, where there
no dramatic effects as the temperature is varied through
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critical temperatureTc . After all, there is no reason to expe
signatures of an equilibrium phase transition in a nonequi
rium situation.

Another interesting work in this context is due to Seth
et al. @18#, who studied hysteretic effects in theT50
random-field Ising model. These authors primarily focus
upon the universal nature of distribution of domain av
lanches along the hysteresis loop and their relation
Barkhausen noise.

Many authors have also investigated hysteresis effect
spin glasses. Let us first discuss relevant experimental wo
Most experimental studies have been in the SG phase, w
a wide variation in the shapes of hysteresis loops has b
categorized. Experimental results also exhibit a strong
pendence on the magnetic history of the system, e.g.,
loops are of different shapes depending on whether the
tem is prepared by ‘‘zero-field cooling’’ or ‘‘field cooling’’
@1#. We do not review here the range of experimentally o
served hysteresis loops but merely provide some relev
references@19–22#.

An early numerical study of this problem is due to Souk
lis et al. @23,24#, who conducted MC studies of hysteres
effects in~a! Ising spin glasses with long-ranged interactio
@23#, and ~b! Heisenberg spin glasses with long-ranged e
change interactions and anisotropic Dzyaloshinsky-Mor
~DM! terms@24#. Both these studies were conducted in t
SG phase. The results of Soukoliset al. can be summarized
as follows:

~i! Hysteresis loops observed for the Ising glass with z
ferromagnetic bias are smooth and continuous—in qua
tive agreement with results for dilute AuFe systems@19#.

~ii ! Sharp magnetization reversals are only observed
Ising glasses with strong ferromagnetic bias. In this case,
hysteresis loops are qualitatively similar to those seen
more concentrated AuFe systems@19#, as well as CuMn and
AgMn systems@21,22#.

~iii ! Displaced hysteresis loops were only observed
Heisenberg glasses. Experimentally, displaced loops are
in glasses containing Mn under special preparation con
tions @20–22#.

Numerical studies of hysteresis effects in Heisenb
glasses have also been undertaken by Dasgupta and
@25#, who also include anisotropy through the DM intera
tion. Dasgupta and Yao found that weak anisotropy effe
promote the rigidity of the spin system during rotation a
inversion of magnetization, and there is a decrease in
sharpness of the hysteresis loop with increasing anisotro
This provides an independent mechanism for sharp magn
zation reversals in hysteresis loops.

Finally, we mention a recent work by Pazmandiet al.
@26#, who studied hysteresis inT50 Ising spin glasses with
zero ferromagnetic bias. These authors numerically de
mined the distribution function of domain avalanches dur
the evolution. They demonstrate that this distribution exh
its ‘‘self-organized critical’’ behavior all along the hysteres
loop.

The above works have primarily confined themselves
qualitative statements about the shapes and sizes of hy
esis loops. In this paper, we undertake a quantitative num
6-2
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HYSTERESIS EFFECTS IN SPIN SYSTEMS WITH . . . PHYSICAL REVIEW E63 026106
cal study of the dependence of the hysteresis loop area u
disorder for spin systems with long-ranged interactions.
particular, we present detailed numerical results for the
pendence of the loop area on disorder. The results prese
ere are obtained from simulations of a soft-spin version
the SK model for spin glasses.

III. THEORETICAL MODELING

The usual model for spin glasses~with long-ranged inter-
actions! is the SK model@27# with the Hamiltonian:

H52(
^ i , j &

N

Ji j s is j2h(
i 51

N

s i , ~2!

where the magnetic impurities (N in number! are described
by an Ising spins i561. In general, each spin interacts wi
all other spins~excluding itself! and the exchange interactio
Ji j is chosen to be a random variable, introducing disor
and frustration in the model. It is customary to assume t
the distribution ofJi j is Gaussian:

P~Ji j !5
1

A2p J̃2
expF2

~Ji j 2J0!2

2J̃2 G , ~3!

where J̃ is the variance of the distribution, and^Ji j &5J0 is
the ferromagnetic bias, which we always set to zero in t
paper. The quantitiesJ0 and J̃ are scaled byN and N1/2,
respectively, to ensure that appropriate thermodynamic qu
tities are extensive in theN→` limit. In Eq. ~2!, h refers to
an external magnetic field.

In this paper, we will focus upon the soft-spin version
the SK model with the Hamiltonian:

H52
r̃

2 (
i 51

N

s i
21

ũ

4 (
i 51

N

s i
42(

^ i , j &

N

Ji j s is j2h(
i 51

N

s i , ~4!

wheres i is now a continuous variable withs ie@2`,`#. In
Eq. ~4!, r̃ and ũ are positive, phenomenological paramete
and the two-state SK model is recovered in the limitr̃ ,ũ
→`, with their ratio remaining finite. The soft-spin S
model has proven to be a convenient starting point for a
lytical calculations@28,29#.

In the present case, we are interested in an explicitly tim
dependent system with the magnetic field having an osc
tory form h5h0cos(vt), whereh0 is the amplitude, andv is
the frequency. We associate dissipative dynamics with
SK Hamiltonian by coupling the system to a heat bath, wh
induces spin flips. For metallic spin glasses, this heat b
can be identified with conduction electrons, which produ
single-spin flip processes with impurity spins via an e
change interaction. Since the spin-glass free-energy la
scape has a large number of metastable states, the dyna
of the system is expected to be complicated. The metast
states are separated by activation barriers of varying heig
Therefore, it is possible to have thermally activated tran
tions leading to a broad distribution of relaxation times.

Dynamical properties of disordered systems have o
been studied by MC simulations of the SK model in conjun
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tion with spin-flip Glauber dynamics@1–4#. However, we
focus upon dissipative Langevin dynamics associated w
the corresponding soft-spin Hamiltonian as modeled by
usual TDGL formulation@30,31#:

ds i~ t !

dt
52G

d~bH !

ds i
1j i~ t !

5GF rs i2us i
31b (

j 51( j Þ i )

N

Ji j s j

1bh0 cos~vt !G1j i~ t !. ~5!

In Eq. ~5!, G21 is the time scale of individual spin flips
and we have introducedr 5b r̃ ; u5bũ, whereb5(kBT)21

is the inverse temperature. The effect of the heat bath
represented by the Gaussian random noise termj i(t) driving
the system, which is characterized by

^j i~ t !&50,

^j i~ t !j j~ t8!&52Gd i j d~ t2t8!. ~6!

The angular brackets in Eq.~6! represent an averaging ove
the thermal noise ensemble, and the fluctuation-dissipa
condition on the variance ensures a proper equilibrium d
tribution.

Before we proceed, we should stress that the Lange
approach has several advantages over the MC appro
First, there is an intrinsic averaging involved at the level
defining variables~or order parameters! in the Langevin for-
mulation. This enables us to obtain smooth and conclus
numerical results with considerably less numerical eff
than in the MC approach. Secondly, MC simulations m
become considerably time consuming because the sys
can get stuck for a long time in a single valley if the neig
boring free-energy barriers are too high—particularly at lo
temperatures.~Of course, this may be true for the Langev
model also, especially at weak values ofh0. Nevertheless,
the continuous spins have more routes to relax from m
stable states in comparison to ‘‘hard’’ MC spins.! Finally,
the SK model with Glauber kinetics is analytically intra
table, whereas the corresponding continuum model is a
nable to approximate analytical solution.

It is convenient to rescale variables in Eq.~5! so as to
reduce the number of free quantities. We introduce the
scaled variables:

s i85Au

r
s i ,

t85Gt,

Ji j8 5bJi j ,

J̃85b J̃,

h085bh0Au

r
,

v85
v

G
, ~7!
6-3
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VARSHA BANERJEE AND SANJAY PURI PHYSICAL REVIEW E63 026106
and obtain the dimensionless dynamical equation~dropping
primes!:

ds i~ t !

dt
5r ~s i2s i

3!1 (
j 51,(j Þ i )

N

Ji j s j1h0 cos~vt !1h i~ t !.

~8!

In all subsequent discussions, we will always refer to dim
sionless variables only. In Eq.~8!, the distribution of the
exchange couplingJi j is obtained as

P~Ji j !5
1

A2p J̃2
expF2

Ji j
2

2J̃2G , ~9!

where the varianceJ̃ must be scaled byN1/2, i.e., J̃
5JN21/2, whereJ is independent ofN. The rescaled Gauss
ian white noiseh i(t) is defined by

^h i~ t !&50,

^h i~ t !h j~ t8!&52
u

r
d i j d~ t2t8!. ~10!

Equations~8!–~10! constitute the dynamical model tha
we investigate in the present paper. It should be kept in m
that, in the corresponding two-state model~which arises for
r ,u→` andh050), the transition between the paramagne
and spin-glass states occurs atbJ51. In the present case, th
transition point will depend uponr andu, in general.

IV. DETAILED NUMERICAL RESULTS

Our numerical study focused upon qualitative and qua
tative properties of hysteresis loops in spin-glass system
particular, we investigated the shape and area of the hy
esis loop as a function of both disorder and the app
field—characterized by a field strengthh0 and frequencyv.
We have considered cases with~a! ‘‘weak’’ disorder, where
the h50 system is in the paramagnetic state, and~b!
‘‘strong’’ disorder, where theh50 system is in the SG state

We integrated Eqs.~8!–~10! using an Euler discretization
scheme with very fine mesh sizeDt51024. We have con-
firmed that numerical results are unchanged on further red
tion of the mesh size. We should remark here that consi
ably higher values ofDt also give qualitatively reasonabl
results. However, we have preferred to simulate the mode
a ‘‘continuum limit’’ so as to avoid discreteness effec
which may interfere with the delicate effects of disord
Typically, the simulations were carried out on a system
sizeN5100 spins. We also did some trial simulations w
N5200 spins and the results were numerically indistingui
able from those forN5100 spins. The initial configuration
for each run was chosen to be a random mixture of11 and
21 with equal probability.

For the results shown in this paper, some parameter
Eqs. ~8!–~10! are fixed, namely,r 5u52.0 andh0510.0.
We present results for a range of values ofJ andv. We have
also investigated other values ofr ,h0 and the results pre
02610
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sented here are representative of results for a wide rang
(r ,h0) values. Finally, thermal noise was mimicked b
Gaussian random numbers with the appropriate amplitu
The hysteresis loop arearm(t)dh(t) @where m(t) is the
time-dependent average magnetization# was computed after
allowing the initial configuration to equilibrate into a stab
loop, which typically took 15 field cycles. All statistical dat
was obtained as an average over at least 40 sets of in
conditions for each disorder configuration. In addition, t
data was averaged over at least 40 disorder configurati
Wherever necessary, even further averaging was perfor
to improve data quality.

Figures 1 and 2 summarize the qualitative effects of d

FIG. 1. Effects of disorder amplitude~J! on the shapes of hys
teresis loops. We plot the time-dependent magnetizationm(t) vs
the magnetic fieldh(t) for J50.0, 0.2, 1.0, 1.66, and 5.0—denote
by the specified line types and symbols. The amplitude and
quency of the magnetic field were fixed ath0510.0 andv50.1.
Other details of the simulation are described in the text.

FIG. 2. Effects of frequency (v) on the shapes of hysteres
loops. We present data forv50.05, 0.1, 0.5, 1.0—denoted by th
specified line types and symbols. The disorder amplitude was fi
at J51.25.
6-4
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HYSTERESIS EFFECTS IN SPIN SYSTEMS WITH . . . PHYSICAL REVIEW E63 026106
order on the shapes of hysteresis loops for a single fi
cycle. Figure 1 shows results for disorder amplitudesJ
50.0, 0.2, 1.0, 1.66, and 5.0, with the frequency fixed av
50.1. In the absence of an applied field, the system is in
paramagnetic phase forJ50.0 and 0.2, and in the SG phas
for J51.0, 1.66, and 5.0. There are two primary effects
increasing disorder on the shape of the hysteresis loop.
first important feature is the dependence of the slope of
loops on disorder amplitude. TheJ50 case corresponds t
the limit of disconnected spins@6–8#, which exhibit a rela-
tively rapid response to a sign change in the external fi
The nature of this response is determined by a compariso
the spin-relaxation time (t r) with the inverse frequency
(v21). Typically, t r!v21 corresponds to the low
hysteresis limit, as the spin readjusts to the applied field
fore it changes substantially.

If the disorder amplitude is increased, the free-energy s
face becomes complicated and is characterized by mul
metastable minima, differing from each other by sm
groups of spins. In the absence of an external field, there
distribution of barrier heights (D); and a corresponding dis
tribution of escape times from these minima (te;ebD). To
the best of our knowledge, there is no rigorous calculation
the barrier distribution as a function ofJ and N @1–4#. A
rough estimate of barrier heights can be obtained as follo
Typically, configurations in the free-energy landscape dif
by clusters ofO(N1/2) spins @4#, with an associated barrie
energyD;N1/4J in the SK model. The MC simulations o
Mckenzie and Young@32# demonstrate that the barrier di
tribution is approximately uniform up to this level. In th
presence of a constant magnetic fieldh, the energy associate
with a spin cluster isDh;N1/4h. Therefore, the relevant pa
rameter to understand relative effects of disorder and m
netic field isD/Dh;J/h.

Next, consider the effect of a time-dependent magn
field h(t)5h0 cos(vt) in the following cases :~a! If h0@D,
the hysteretic response will be unaffected by the disor
whenuh(t)u.h0. The only effects of disorder are seen wh
h(t).0, and the range of relevant escape times are de
mined byv21.te . Thus, we expect diminishing effects o
disorder asv is increased.~We will quantify this shortly.!
~b! If h0;D, similar arguments apply except that the effe
of disorder are seen through the entire hysteresis cycle.~c! If
h0!D, the effects of disorder are dominant and tempo
evolution occurs primarily through thermally activated ba
rier hopping. In this limit, we do not even expect we
defined hysteresis loops.

The hysteresis loops in Fig. 1 bear out the above ar
ments. ForJ,0.2, the hysteresis loops are barely dist
guishable from that forJ50. The only differences are see
in the region whereh(t);0. This difference also diminishe
asv increases, as we will quantify shortly. At higher amp
tudes of disorder, trapping of the system in metastable st
prevents sharp reversal of spins. Therefore, the slopes o
hysteresis loops become increasingly flatter with increas
disorder. Even more drastic effects of trapping are seen
stronger disorder, e.g., the loop forJ55.0, which is actually
displaced from the origin—a consequence of long-term tr
ping in a restricted region of phase space. In some cases
02610
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observe that the hysteresis loops do not always close
completion of a field cycle. Finally, for extremely large va
ues of disorder, the system is unable to respond to the ch
ing field. Clearly, there will be no hysteresis loops for in
nite disorder amplitude, since the driving field will be unab
to remove the system from a trapped state.

The second important feature concerns the tails of
loops, which become more open~relative to the width at zero
field! for larger disorder values. Correspondingly, the sha
of the loops also become more elliptical as the disorder a
plitude is increased. This should be contrasted with tails
systems with no disorder~or weak disorder!, where the satu-
ration magnetization is attained rapidly. The results in Fig
are consistent with those from earlier numerical simulatio
@23#, and also experimental results@19,22#.

Figure 2 shows hysteresis loops for field frequencyv
50.05, 0.1, 0.5, and 1.0, for a representative value of
disorder amplitudeJ51.25. The loops become flatter a
higher frequencies. As we demonstrate shortly, the effect
disorder are diminished with increasing frequency whenh0
>D.

We next attempt to quantify the effects of disorder on t
area of the hysteresis loop. As we have stressed in Sec
this experimentally relevant quantity has been the subjec
most investigations. It is convenient to focus on the quan

f ~v,J!5
A~v,J!

A~v,0!
, ~11!

whereA(v,J) is the area of the hysteresis loop at frequen
v and disorder amplitudeJ; with other parameters bein
fixed as specified earlier. Clearly,f (v,0)51, so the strong
dependence ofA(v,0) onv @6–8# has been factored out in
our definition.

Figure 3 plotsf (v,J) vs J for a wide range of disorde

FIG. 3. Plot of f (v,J) @5A(v,J)/A(v,0)# vs J for a wide
range of disorder amplitudes. The quantityA(v,J) is the area of the
hysteresis loop for frequencyv and disorder amplitudeJ. We
present data forv50.05, 0.1, 0.5, 1.0, and 5.0—denoted by t
specified symbols.
6-5
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values and for frequenciesv50.05, 0.1, 0.5, 1.0, and 5.0
We will shortly examine the behavior off (v,J) in various
limits, but it is useful to make some general observations
follows: ~a! As expected,f (v,0)51 and f (v,`)50. ~b!
The functionf (v,J) rises to a maximum atJ5Jm and then
decays to 0. The quantityf (v,Jm) decreases with increasin
frequency.~c! In general,f (v,J) decreases with increasin
frequency.

Let us now elucidate various limiting behaviors of th
function f (v,J). Figure 4~a! plots ln@f(v,J)21# vs ln(J) from
Fig. 3 for weak values of disorder, ranging fromJ51025 to
J51021. In the absence of a magnetic field, these values
disorder correspond to the paramagnetic phase. Figure~a!
constitutes strong numerical evidence of a power-law sca
f (v,J).11B(v)Jb, which holds over four decades of dis

FIG. 4. ~a! Plot of ln@f(v,J)21# vs ln(J) over 4 decades of wea
disorder values, ranging fromJ51025 to J51021. We present data
for v50.05, 0.1, 0.5, 1.0, and 5.0—denoted by the specified s
bols. The best linear fits are superposed on the relevant data
and the corresponding exponents~referred to asb in the text! are
specified in the figure. The error bars on exponent values
60.01. ~b! Plot of ln(B) vs ln(v), where ln(B) is obtained as the
intercept of the appropriate best-fit line in Fig. 4~a!. The best-fit line
for the present data set is shown in the figure, and the rele
exponent isa51.0360.01.
02610
s

f

g

order amplitude. The best-fit values forb are specified in the
figure and appear to be universal. The suggested unive
exponent is~obviously! b51/2, but we have no theoretica
argument for such a behavior.

Next, we consider the behavior off (v,J) with v. Figure
4~b! plots ln(B) vs ln(v), obtained from the best-fit lines in
Fig. 4~a!. Again, the data exhibits a reasonable power-l
scaling,B(v).bv2a, albeit over two decades of frequenc
The best-fit value for this exponent isa51.0360.01. Com-
bining the results of Figs. 4~a! and 4~b!, we obtain an overall
scaling form forf (v,J) as

f ~v,J!.11bv2aJb1higher order terms, ~12!

valid for the weak values of disorder considered here. Eq
tion ~12! is the main result of this paper. We again stress t
we have no analytical arguments to support this functio
form. Nevertheless, the numerical evidence is rather com
ling, and we hope our results will provoke further numeric
and analytical investigations of this problem. Furthermore
the context of the arguments by Sideset al. @15,16# in the
case of pure systems, we have no strong reason to be
that the power laws in Eq.~12! are universal. It is reasonabl
to believe that the form of Eq.~12! may be only a limiting
case of a more general expression—even though it appea
hold for an extended range of parameter values. Of cou
the elucidation of such behavior must necessarily rely up
analytic arguments, which are not available at present.

Let us now consider stronger values of disorder, cor
sponding to the SG phase in the absence of a magnetic fi
Figure 5~a! plots ln@f(v,J)# vs ln(J) for values of disorder
ranging from J51.0 to J55.0; and frequenciesv50.05,
0.1, 0.5, 1.0, and 5.0. We should stress again that hyste
loops are not well-defined at much higher values of disord
For example, the effects of Barkhausen noise, which a
due to avalanches all along the hysteresis loop@26#, are more
pronounced at high disorder values. Furthermore, as we h
remarked earlier, the loops may not even close at high va
of disorder. Over the limited range of disorder values
which reliable data is available, the data forf (v,J) again
exhibits a reasonable power-law scalingf (v,J).C(v)J2d.
The best-fit exponents for different values of frequency
shown in the figure, and again appear to be universal. Fig
5~b! plots ln(C) vs ln(v), where ln(C) is obtained from the
best-fit lines in Fig. 5~a!. Again, the data exhibits a reason
able power-law behaviorC(v).cv2g over two decades o
frequency. The results from Figs. 5~a! and 5~b! suggest an
overall scaling formf (v,J).bv2gJ2d, valid for strong dis-
order values—though the numerical evidence for this form
not as compelling as that for Eq.~12!.

We have also studied the remnant magnetizationmr(v,J)
@i.e., the width of the hysteresis loop whenh(t)50#; and the
saturation magnetizationms(v,J) ~i.e., the maximum mag-
netization in the cycle!. We should remark that the saturatio
value of the magnetization need not necessarily occur w
h(t) is maximum—especially for strong disorder values.
weak values of disorder@as in Fig. 4~a!#, it is not possible to
clearly distinguish the values ofmr(v,J) andms(v,J) from
the corresponding values atJ50. This is due to the
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Barkhausen noise along the hysteresis curve, whose am
tude is comparable to the differencesumi(v,J)2mi(v,0)u,
i[r ,s.

For strong disorder@as in Fig. 5~a!#, we obtain clear nu-
merical results for these quantities. Figure 6 plo
ln@mi(v,J)/mi(v,0)# vs ln(J) for strong disorder andv50.1.
The scaling form of the remnant magnetization is similar
that shown forf (v,J) in Fig. 5. This is trivially understood
if the hysteresis loop is approximated as an ellipse. Howe
due to trapping and saturation effects in the tails of the loo
the saturation magnetization does not exhibit simple sca
behavior, as seen in Fig. 6.

FIG. 5. ~a! Plot of ln@f(v,J)# vs ln(J) for strong disorder values
ranging fromJ51.0 to J55.0. We present data forv50.05, 0.1,
0.5, 1.0, and 5.0—denoted by the specified symbols. The best li
fits are superposed on the relevant data sets, and the correspo
exponents~referred to asd in the text! are specified in the figure
The error bars on exponent values are60.01. ~b! Plot of ln(C) vs
ln(v), where ln(C) is obtained as the intercept of the appropria
best-fit line in Fig. 5~a!. The corresponding best-fit line for th
present data set is shown in the figure, and the relevant expone
g50.6860.01.
02610
li-

s

r,
s,
g

V. SUMMARY AND DISCUSSION

Let us briefly summarize the results presented in this
per. We have undertaken a detailed numerical study of h
teresis loops in spin systems with quenched disorder in
exchange interactions, and zero ferromagnetic bias. In
ticular, we have focused on the variation of the loop area
a function of disorder amplitude~J! and field frequency (v).
The loop area is the most important experimental charac
istic of the hysteresis loop, as it measures the heat dissip
in a field cycle.

For weak values of disorder, where the system is pa
magnetic in the absence of a magnetic field, we find comp
ling numerical evidence for power-law scaling of the qua
tity f (v,J)5A(v,J)/A(v,0), where A(v,J) is the loop
area at frequencyv and disorder amplitudeJ. The power-
law scaling is seen for four decades of disorder and t
decades of frequency. At present, we have no analytica
guments to support this scaling form but hope that our
merical results will provide an impetus for further investig
tions of this problem.

For strong values of disorder, where the system is in
spin-glass phase in the absence of a magnetic field, we
observe power-law scaling off (v,J). However, this applies
only for a restricted range of disorder values. We do not h
results for very high disorder amplitudes, where there are
well-defined hysteresis loops. We have also studied o
relevant quantities like the remnant and saturation magn
zations of the hysteresis loop.

Qualitatively, the effects of disorder on hysteresis loo
can be understood in terms of a semiphenomenolog
model involving clusters of a small number of spins@33,23#.
This model invokes the properties of the free-energy surf
of a disordered system, which is comprised of metasta
minima separated by barriers. The free-energy surfac

ar
ing

t is

FIG. 6. Plot of ln@mi(v,J)/mi(v,0)# vs ln(J) for strong disorder.
The labelsi 5r and i 5s refer to the ‘‘remnant magnetization’’ and
‘‘saturation magnetization,’’ respectively. The best-fit line to t
remnant magnetization data is superposed on the relevant dat
and the best-fit exponent isd51.9960.01.
6-7



ab

n

el

e
es
fo
. A

ee
to

ad-
g-

-

VARSHA BANERJEE AND SANJAY PURI PHYSICAL REVIEW E63 026106
comprised of a distribution of barrier heights (D), and a
consequent distribution of escape times from the metast
minima (te). For magnetic-field strengths,h0>D, we expect
that the escape times that are relevant to spin dynamics i
oscillatory magnetic field, satisfyv21.te . Therefore, we
expect the effects of disorder to be diminished at higher-fi
frequencies—in accordance with our numerical results.

Of course, the simple argument above only serves to
tablish trends. At present, we are attempting to quantify th
arguments with the goal of providing an analytical basis
the scaling laws suggested by our numerical simulations
ic

E

tt.

02610
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least in the context of weak disorder, where the field-fr
system is paramagnetic, we believe that it will be possible
formulate the necessary arguments.
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